Journal of Organometallic Chemistry, 366 (1989) 305-312 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09661

Umsetzungen des Acetylenkomplexes $(C_6H_3Me_3)(CO)_2Cr(C_2H_2)$ mit PMe₃ und HNMe₂. Festkörperstrukturen von $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ und $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$

Robin D. Rogers *

Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115 (U.S.A.)

Helmut G. Alt * und Heidi E. Engelhardt

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstraße 30, D-8580 Bayreuth (Bundesrepublik Deutschland)

(Eingegangen den 17. November 1988)

Abstract

The acetylene complex $(C_6H_3Me_3)(CO)_2Cr(C_2H_2)$ (1) reacts with PMe₃ to give the substitution product $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2) and the addition product $(C_6H_3Me_3)(CO)_2Cr[C(PMe_3)CH_2)]$ (3). Reaction of 1 with HNMe₂ gives the dimethylaminocarbene complex $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4). Complexes 2 and 4 are characterized by crystal structures.

Zusammenfassung

Der Acetylenkomplex $(C_6H_3Me_3)(CO)_2Cr(C_2H_2)$ (1) reagiert mit PMe₃ zum Substitutionsprodukt $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2) und zum Additionsprodukt $(C_6H_3Me_3)(CO)_2Cr[C(PMe_3)CH_2)]$ (3). Mit HNMe₂ bildet 1 den Dimethylamino-Carbenkomplex $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4). Die Komplexe 2 und 4 werden durch Kristallstrukturen charakterisiert.

Einleitung

Wir haben kürzlich gezeigt, daß die Acetylenkomplexe $Cp'(CO)_2Mn(C_2H_2)$ $(Cp' = \eta^5 \cdot C_5H_5, \eta^5 \cdot C_5H_4Me, \eta^5 \cdot C_5Me_5)$ [1,2] und $Ar(CO)_2Cr(C_2H_2)$ (Ar = $\eta^6 \cdot C_6H_6, \eta^6 \cdot C_6H_3Me_3, \eta^6 \cdot C_6Me_6)$ [3] mit Phosphanen und Aminen reagieren, wobei Substitutions- und Additionsprodukte entstehen. In dieser Arbeit berichten wir über die Molekülstrukturen von $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ und $(C_6H_3Me_3)(CO)_2Cr[C-(Me)NMe_2]$.

Ergebnisse und Diskussion

Umsetzung von $(C_6H_3Me_3)(CO)_2Cr(C_2H_2)$ (1) mit PMe₃ und HNMe₂

Der Acetylenkomplex $(C_6H_3Me_3)(CO)_2Cr(C_2H_2)$ (1) reagiert mit PMe₃ bei Raumtemperatur zum Substitutionsprodukt 2 und zum Additionsprodukt 3.

Ein ylidischer Carbenkomplex " $(C_6H_3Me_3)(CO)_2Cr[CHCH(PMe_3)]$ " konnte bei dieser Reaktion nicht nachgewiesen werden. Ein solcher Komplextyp entsteht allerdings, wenn 1 mit PEt₃ bzw. PBu₃ in analoger Weise umgesetzt wird (vgl. [3]). Es ist denkbar, daß das Nebenprodukt 2 durch eine Umlagerungs- und

Fig. 1. ORTEP-Darstellung eines Moleküls von $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2).

Tabelle 1	
Bindungsabstände (Å) und -winkel (°)	für (C ₆ H ₃ Me ₃)(CO) ₂ Cr(PMe ₃) (2)

÷				
Cr-P	2.289(4)	Cr-C(1)	1.82(1)	
Cr-C(2)	1.81(1)	Cr-C(3)	2.26(1)	
Cr-C(4)	2.24(1)	Cr-C(5)	2.20(1)	
Cr-C(6)	2.20(1)	Cr-C(7)	2.19(1)	
Cr-C(8)	2.22(1)	P-C(12)	1.83(1)	
P-C(13)	1.82(1)	P-C(14)	1.81(1)	
O(1)-C(1)	1.16(1)	O(2) - C(2)	1.15(2)	
C(3) - C(4)	1.43(2)	C(3)-C(8)	1.39(2)	
C(3)-C(9)	1.50(2)	C(4)-C(5)	1.41(2)	
C(5)-C(6)	1.39(2)	C(5)-C(10)	1.51(2)	
C(6)-C(7)	1.41(2)	C(7)-C(8)	1.40(2)	
C(7)-C(11)	1.51(2)	Cent ^a -Cr	1.71	
P-Cr-C(1)	87.5(4)	P-Cr-C(2)	84.7(5)	
C(1) - Cr - C(2)	87.8(6)	Cr - P - C(12)	120.8(5)	
Cr-P-C(13)	114.8(5)	C(12)-P-C(13)	100.1(7)	
Cr-P-C(14)	117.8(5)	C(12)-P-C(14)	100.6(7)	
C(13) - P - C(14)	99.1(8)	Cr - C(1) - O(1)	178(1)	
Cr-C(2)-O(2)	180(1)	C(4)-C(3)-C(8)	118(1)	
C(4)-C(3)-C(9)	119(1)	C(8)-C(3)-C(9)	122(1)	
C(3)-C(4)-C(5)	120(1)	C(4)-C(5)-C(6)	120(1)	
C(4) - C(5) - C(10)	119(1)	C(6)-C(5)-C(10)	122(1)	
C(5)-C(6)-C(7)	121(1)	C(6)-C(7)-C(8)	119(1)	
C(6)-C(7)-C(11)	120(1)	C(8)-C(7)-C(11)	121(1)	
C(3)-C(8)-C(7)	122(1)	Cent-Cr-P	130.7	
Cent-Cr-C(1)	125.1	Cent-Cr-C(2)	126.9	

 \overline{a} Cent = Zentrum des Mesitylenringes

Fig. 2. ORTEP-Darstellung eines Moleküls von $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4).

Tabelle 2

Bindungsabstände (Å) und -winkel (°) für $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4)

 Cr-C(1)	1.83(1)	Cr-C(2)	1.82(1)
Cr-C(3)	2.27(1)	Cr-C(4)	2.20(1)
Cr-C(5)	2.21(1)	Cr-C(6)	2.19(1)
Cr-C(7)	2.20(1)	Cr-C(8)	2.22(1)
Cr-C(12)	2.05(1)	O(1)-C(1)	1.17(1)
O(2) - C(2)	1.16(1)	N~C(12)	1.21(2)
N-C(14)	1.54(2)	N~C(15)	1.48(1)
C(3) - C(4)	1.42(1)	C(3)-C(8)	1.41(2)
C(3) - C(9)	1.53(1)	C(4) - C(5)	1.43(1)
C(5) - C(6)	1.40(1)	C(5)-C(10)	1.55(1)
C(6) - C(7)	1.43(1)	C(7)–C(8)	1.41(1)
C(7)–C(11)	1.53(2)	C(12)-C(13)	1.67(2)
Cr-Cent ^a	1.70		
C(1) - Cr - C(2)	86.8(5)	C(1)-Cr-C(12)	93.9(5)
C(2)CrC(12)	88.6(5)	C(12) - N - C(14)	115(1)
C(12)-N-C(15)	129(2)	C(14) - N - C(15)	116(1)
Cr - C(1) - O(1)	176(1)	Cr-C(2)-O(2)	178(1)
C(4) - C(3) - C(8)	116(1)	C(4)-C(3)-C(9)	122(1)
C(8) - C(3) - C(9)	121(1)	C(3)-C(4)-C(5)	123(1)
C(4) - C(5) - C(6)	116(1)	C(4)-C(5)-C(10)	122(1)
C(6)-C(5)-C(10)	122(1)	C(5)-C(6)-C(7)	123(1)
C(6)-C(7)-C(8)	116(1)	C(6)-C(7)-C(11)	120(1)
C(8)-C(7)-C(11)	123(1)	C(3)-C(8)-C(7)	124(1)
CrC(12)N	136(2)	Cr - C(12) - C(13)	115(1)
N-C(12)-C(13)	109(1)	Cent-Cr-C(1)	127.6
Cent-Cr-C(2)	127.3	Cent-Cr-C(12)	121.4

^{*a*} Cent = Zentrum des Mesitylenringes.

Eliminierungsreaktion des vermuteten Ylidkomplexes $(C_6H_3Me_3)(CO)_2Cr[CHCH-(PMe_3)]$ entsteht.

Mit HNMe₂ reagiert 1 in einer Additionsreaktion zum Dimethylamino-Carbenkomplex $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4).

Die Produkte 2-4 wurden bereits spektroskopisch charakterisiert [3].

Festkörperstrukturen von $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2) und $(C_6H_3Me_3)(CO)_2Cr[C-(Me)NMe_2)]$ (4)

Der Trimethylphosphankomplex 2 besitzt die in Fig. 1 dargestellte pseudotetraedrische Struktur. Die Bindungsabstände und -winkel sind in Tabelle 1 angegeben.

Der Cr-P-Abstand in 2 beträgt 2.289(4) Å und ist somit etwas kürzer als der Cr-P-Abstand im Phenanthrenkomplex $(C_{14}H_{10})(CO)_2Cr(PEt_3)$ (2.323(6) Å [4]) bzw. im Triphenylphosphankomplex (CO)₅Cr(PPh₃) (2.422(1) Å [5]).

Auch der Dimethylamino-Carbenkomplex 4 besitzt eine pseudo-tetraedrische Struktur. Die Bindungsabstände und -winkel sind in Tabelle 2 angegeben.

Die vom Carbenliganden aufgespannte Ebene (C(12)-C(13)-N) bildet mit der Spiegelebene des $(C_6H_3Me_3)(CO)_2Cr$ -Fragments (C(3)-C(6)-Cr) einen Winkel von 86°. Eine vergleichbare Orientierung des Carbenliganden zum Aromatliganden

Tabelle 3

Kristalldaten und Zusammenfassung der Intensitätsmessungen und der Strukturverfeinerung

*******************************	$(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2)	$(C_6H_3Me_3)(CO)_2Cr-$ [C(Me)NMe ₂] (4)
Farbe des Kristalls	braun	rot
Molmasse	304.3	299.3
Raumgruppe	$P2_1/n$	$P2_1/c$
Zellkonstanten		
a (Å)	8.594(7)	14.656(5)
<i>b</i> (Å)	20.515(7)	8.173(3)
c (Å)	8.712(2)	12.635(8)
β ^(°)	92.70(4)	93.89(4)
Zellvolumen (Å ³)	1534	1510
Moleküle pro Elementarzelle	4	4
ρ (berechnet) (g cm ⁻³)	1.32	1.32
μ (berechnet) (cm ⁻¹)	7.83	7.01
Max. Kristallabmessungen (mm)	$0.15 \times 0.33 \times 0.65$	$0.08 \times 0.30 \times 0.38$
Scan Weite	$0.80 \pm 0.35 \tan \theta$	$0.80 + 0.35 \tan \theta$
Standard-Reflexe	800; 0,20,0; 006	800; 004; 330
Standard-Abweichung	$\pm 1\%$	-2.3%
Gemessene Reflexe	2760	2944
Bereich von h, k, l	$+10, +24, \pm 10$	$\pm 17, +9, +14$
Beobachtete Reflexe [$F_0 \ge 5\sigma(F_0)$]	2136	1493
Anzahl des variierten Parameters	163	172
Gewichte	$[\sigma(F_{\rm o})^2]^{-1}$	$[\sigma(F_{\rm o})^2]^{-1}$
GOF	1.35	2.49
$R = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} $	0.044	0.070
R _w	0.044	0.078
Maximum der Restelektronendichte		
(e ⁻ /Å)	0.5	0.5

wurde auch für $(C_5Me_5)(CO)_2Mn[C(Me)NMe_2]$ und $(C_5Me_5)(CO)_2Mn[C(Me)NH_2]$ [2] beobachtet. Auch im Methoxycarbenkomplex $(C_6H_6)(CO)_2Cr[C(OMe)Ph]$ bildet die von Carbenliganden aufgespannte Ebene mit der Spiegelebene des $(C_6H_6)(CO)_2$ -Cr-Fragments einen annähernd rechten Winkel [6]. Diese 90°-Orientierung des Carbenliganden wird als energetisch ungünstiger angesehen als die, bei der die Carbenligandebene und die Spiegelebene des Aromatdicarbonylchrom-Fragments zusammenfallen (vgl. [7]). Der Abstand Cr-C(12) beträgt 2.05(1) Å und ist deutlich größer als der Cr-C_{Carben}-Abstand im Methoxycarbenkomplex $(C_6H_6)(CO)_2Cr[C-$

Tabelle	4
---------	---

Atom	x/a	y/b	z / c	
Cr	0.70126(7)	0.60203(3)	0.82591(7)	
Р	0.8485(1)	0.69310(5)	0.8771(1)	
O(1)	0.7669(4)	0.5611(2)	1.1500(4)	
O(2)	0.4416(4)	0.6815(2)	0.9386(4)	
C(1)	0.7439(5)	0.5775(2)	1.0238(5)	
C(2)	0.5421(5)	0.6504(2)	0.8944(5)	
C(3)	0.8026(5)	0.5897(2)	0.5932(4)	
C(4)	0.6391(5)	0.6008(2)	0,5737(4)	
C(5)	0.5335(4)	0.5620(2)	0.6528(5)	
C(6)	0.5893(5)	0.5112(2)	0.7453(5)	
C(7)	0.7509(5)	0.5004(2)	0.7684(5)	
C(8)	0.8545(5)	0.5395(2)	0.6906(5)	
C(9)	0.9122(5)	0.6277(3)	0.4977(5)	
C(10)	0.3610(5)	0.5746(2)	0.6273(5)	
C(11)	0.8082(6)	0.4445(2)	0.8690(6)	
C(12)	1.0595(5)	0.6921(3)	0.8564(5)	
C(13)	0.8411(6)	0.7236(3)	1.0729(5)	
C(14)	0.7963(6)	0.7670(2)	0.7744(6)	
H(1)[C(4)]	0.601	0.635	0.507	
H(1)[C(6)]	0.518	0.483	0.793	
H(1)[C(8)]	0.963	0.531	0.704	
H(1)[C(9)]	0.919	0.605	0.394	
H(2)[C(9)]	0.894	0.680	0.496	
H(3)[C(9)]	1.021	0.621	0.540	
H(1)[C(10)]	0.308	0.563	0.724	
H(2)[C(10)]	0.309	0.545	0.576	
H(3)[C(10)]	0.334	0.621	0.626	
H(1)[C(11)]	0.743	0.441	0.958	
H(2)[C(11)]	0.915	0.457	0.908	
H(3)[C(11)]	0.822	0.410	0.805	
H(1)[C(12)]	1.099	0.740	0.886	
H(2)[C(12)]	1.084	0.680	0.755	
H(3)[C(12)]	1.115	0.663	0.932	
H(1)[C(13)]	0.739	0.720	1.110	
H(2)[C(13)]	0.913	0.756	1.092	
H(3)[C(13)]	0.893	0.682	1.155	
H(1)[C(14)]	0.799	0.764	0.668	
H(2)[C(14)]	0.693	0.778	0.787	
H(3)[C(14)]	0.842	0.821	0.815	

Ortsparameter der Atome in $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2)

(OMe)Ph] (1.935(12) Å [6]) oder im ähnlichen Dimethylamino-Carbenkomplex $(C_5Me_5)(CO)_2Mn[C(Me)NMe_2]$ (1.991(4) Å [2]), ist aber für einen Aminocarbenkomplex typisch [8].

Experimenteller Teil

Die Darstellung von $(C_6H_3Me_3)(CO)_2Cr(PMe_3)$ (2) und $(C_6H_3Me_3)(CO)_2Cr[C-(Me)NMe_2]$ (4) wurde von uns erst kürzlich beschrieben [3].

Röntgenkristallographie

In Tabelle 3 sind die Kristalldaten, die Intensitätsmessungen und die Daten zur Strukturverfeinerung zusammengefaßt. Die Röntgenmessungen erfolgten mit Mo- K_{α} -Strahlung ($\lambda = 0.71073$ Å) auf einem Enraf-Nonius CAD-4-Diffraktometer mit Graphitmonochromator. Intensitätsdaten: $\theta/2\theta$ Meßbetrieb; $2 < 2\theta < 50^{\circ}$. Benütztes Computerprogramm: SHELX [9]. Lösung der Strukturen: Schweratom-technik. Obwohl die thermischen Ellipsoide für den C(Me)NMe₂-Liganden von 4 relativ groß ausfielen (besonders für N), ließ sich für diesen Liganden kein Modell für eine Fehlordnung entwickeln. Die Wasserstoffatome für den Aromaten wurden aufgrund von F_c -Berechnungen angegeben. Die Atomparameter sind in den Tabellen 4 und 5 aufgeführt. Die Verfeinerung der Nichtwasserstoffe mit anisotropen Temperaturfaktoren lieferte die endgültigen Werte für R und R_w .

Atom	x/a	y/b	z/c	
Cr	0.2412(1)	0.3804(2)	0.4593(1)	
O(1)	0.3000(6)	0.538(1)	0.2612(7)	
O(2)	0.3509(6)	0.094(1)	0.3958(7)	
N	0.3897(7)	0.589(2)	0.572(1)	
C(1)	0.2785(7)	0.481(1)	0.3404(9)	
C(2)	0.3087(7)	0.205(1)	0.4224(9)	
C(3)	0.1632(7)	0.473(1)	0.596(1)	
C(4)	0.1673(7)	0.300(1)	0.5958(9)	
C(5)	0.1381(7)	0.202(1)	0,5057(9)	
C(6)	0.1035(7)	0.287(2)	0.4154(8)	
C(7)	0.1022(7)	0.462(2)	0.408(1)	
C(8)	0.1301(7)	0.548(1)	0.501(1)	
C(9)	0.1934(8)	0.574(2)	0.6941(9)	
C(10)	0.1415(8)	0.013(1)	0.509(1)	
C(11)	0.0651(7)	0.546(2)	0.306(1)	
C(12)	0.3519(8)	0.460(2)	0.554(1)	
C(13)	0.4031(8)	0.314(2)	0.6300(9)	
C(14)	0.3487(9)	0.735(2)	0.508(1)	
C(15)	0.4671(8)	0.628(2)	0.650(1)	
H(1)[C(4)]	0.191	0.245	0.659	
H(1)[C(6)]	0.079	0.224	0.357	
H(1)[C(8)]	0.126	0.664	0.499	

Tabelle 5

Ortsparameter der Atome in $(C_6H_3Me_3)(CO)_2Cr[C(Me)NMe_2]$ (4)

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie für die finanzielle Unterstützung und dem U.S. National Science Foundation Chemical Instrumentation Program für die Beschaffung des Diffraktometers (R.D.R.)

Literatur

- 1 H.G. Alt, H.E. Engelhardt und E. Steinlein, J. Organomet. Chem., 344 (1987) 227.
- 2 H.G. Alt, H.E. Engelhardt, E. Steinlein und R.D. Rogers, J. Organomet. Chem., 344 (1987) 321.
- 3 H.G. Alt, H.E. Engelhardt und A.C. Filippou, J. Organomet. Chem., 355 (1988) 139.
- 4 M. Cais, M. Kaftory, D.H. Kohn und D. Tatarsky, J. Organomet. Chem., 184 (1980) 103.
- 5 H.J. Plastas, J.M. Stewart und S.O. Grim, J. Am. Chem. Soc., 91 (1969) 4326 und Inorg. Chem., 12 (1973) 265.
- 6 U. Schubert, J. Organomet. Chem., 185 (1980) 373.
- 7 U. Schubert, Coord. Chem. Rev., 55 (1984) 261.
- 8 K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert und K. Weiss. Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, 1983.
- 9 G.M. Sheldrick, SHELX, a system of computer programs für X-ray structure determination as locally modified (1976).